4-1 Videos Guide

4-1a

- Introduction to the concept of areas and distances

4-1b

Exercise:

- (a) Use six rectangles to find estimates of each type for the area under the given graph of f from $x=0$ to $x=12$.
(i) L_{6} (sample points are left endpoints)
(ii) R_{6} (sample points are right endpoints)
(iii) M_{6} (sample points are midpoints)
(b) Is L_{6} an underestimate or overestimate of the true area?
(c) Is R_{6} an underestimate or overestimate of the true area?
(d) Which of the numbers L_{6}, R_{6}, or M_{6} gives the best estimate? Explain.

4-1c

Definition: (area)

- The area A of the region S that lies under the graph of the continuous function f is the limit of the sum of the areas of approximating rectangles:
$A=\lim _{n \rightarrow \infty} R_{n}=\lim _{n \rightarrow \infty}\left[f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) \Delta x+\cdots+f\left(x_{n}\right) \Delta x\right]$
ALSO $A=\lim _{n \rightarrow \infty} L_{n}=\lim _{n \rightarrow \infty}\left[f\left(x_{0}\right) \Delta x+f\left(x_{1}\right) \Delta x+\cdots+f\left(x_{n-1}\right) \Delta x\right]$,
where R_{n} indicates rectangles whose heights are given using the right endpoints of subintervals and L_{n} uses left endpoints of subintervals

Exercises:

- Use the definition of area to express the area under f.

$$
f(x)=x^{2}+\sqrt{1+2 x}, \quad 4 \leq x \leq 7
$$

4-1d

- Determine a region whose area is equal to the given limit. Do not evaluate the limit.

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{3}{n} \sqrt{1+\frac{3 i}{n}}
$$

- The velocity graph of a car accelerating from rest to a speed of $120 \mathrm{~km} / \mathrm{h}$ over a period of 30 seconds is shown. Estimate the distance traveled during this period.

